
BINARY SEARCH TREE:-

A binary search tree follows some order to arrange the elements. In a

Binary search tree, the value of left node must be smaller than the parent

node, and the value of right node must be greater than the parent node.

 A binary search tree is a binary tree which is either empty or

satisfies the following rules:-

1) The value of key in the left child or left sub tree is less than the

value of the root.

2) The value of the key in the right child or right sub tree is more than

or equal to the value of the root.

3) All the sub tree of the left and right children observe the two rules.

Advantages of Binary search tree

o Searching an element in the Binary search tree is easy as we always have

a hint that which subtree has the desired element.

o As compared to array and linked lists, insertion and deletion operations

are faster in BST.

Example of creating a binary search tree

Now, let's see the creation of binary search tree using an example.

Suppose the data elements are - 45, 15, 79, 90, 10, 55, 12, 20, 50

o First, we have to insert 45 into the tree as the root of the tree.

o Then, read the next element; if it is smaller than the root node, insert it

as the root of the left subtree, and move to the next element.

o Otherwise, if the element is larger than the root node, then insert it as

the root of the right subtree.

The process of creating the BST is shown below -

Step 1 - Insert 45.

Step 2 - Insert 15.

As 15 is smaller than 45, so insert it as the root node of the left subtree.

Step 3 - Insert 79.

As 79 is greater than 45, so insert it as the root node of the right subtree.

Step 4 - Insert 90.

90 is greater than 45 and 79, so it will be inserted as the right sub tree of 79.

Step 5 - Insert 10.

10 is smaller than 45 and 15, so it will be inserted as a left subtree of 15.

Step 6 - Insert 55.

55 is larger than 45 and smaller than 79, so it will be inserted as the left subtree of 79.

Step 7 - Insert 12.

12 is smaller than 45 and 15 but greater than 10, so it will be inserted as the right subtree of 10.

Step 8 - Insert 20.

20 is smaller than 45 but greater than 15, so it will be inserted as the right subtree of 15.

Step 9 - Insert 50.

50 is greater than 45 but smaller than 79 and 55. So, it will be inserted as a left

sub tree of 55.

Now, the creation of binary search tree is completed.

Searching in Binary search tree

Searching means to find or locate a specific element or node in a data

structure. In Binary search tree, searching a node is easy because
elements in BST are stored in a specific order. The steps of searching a

node in Binary Search tree are listed as follows –

1. First, compare the element to be searched with the

root element of the tree.

2. If root is matched with the target element, then return

the node's location.

3. If it is not matched, then check whether the item is

less than the root element, if it is smaller than the root

element, then move to the left subtree.

4. If it is larger than the root element, then move to the

right subtree.

5. Repeat the above procedure recursively until the

match is found.

6. If the element is not found or not present in the tree,

then return NULL.

Suppose we have to find node 20 from the below

tree.

Deletion in Binary Search tree

To delete a node from BST, there are three possible

situations occur -

o The node to be deleted is the leaf node, or,

o The node to be deleted has only one child, and,

o The node to be deleted has two children

1) When the node to be deleted is the leaf node

suppose we have to delete node 90, as the node to be

deleted is a leaf node, so it will be replaced with NULL,

and the allocated space will free.

2) When the node to be deleted has only one

child

suppose we have to delete the node 79, as the

node to be deleted has only one child, so it will be

replaced with its child 55.

So, the replaced node 79 will now be a leaf node

that can be easily deleted.

When the node to be deleted has two children

 In such a case, the steps to be followed are listed as follows -

o First, find the inorder successor of the node to be deleted.

o After that, replace that node with the inorder successor until the

target node is placed at the leaf of tree.

o And at last, replace the node with NULL and free up the allocated

space.

We have to delete node 45 that is the root node, as the node to be

deleted has two children, so it will be replaced with its inorder

successor. Now, node 45 will be at the leaf of the tree so that it can be

deleted easily.

Insertion in Binary Search tree

A new key in BST is always inserted at the leaf. To insert an element in
BST, we have to start searching from the root node; if the node to be

inserted is less than the root node, then search for an empty location in

the left subtree. Else, search for the empty location in the right subtree
and insert the data. Insert in BST is similar to searching, as we always

have to maintain the rule that the left subtree is smaller than the root, and

right subtree is larger than the root.

1. Time Complexity

Operations Best case time

complexity

Average case time

complexity

Worst case time

complexity

Insertion O(log n) O(log n) O(n)

Deletion O(log n) O(log n) O(n)

Search O(log n) O(log n) O(n)

2. Space Complexity

o The space complexity of all operations of Binary search tree is O(n).

AVL Tree

AVL Tree is invented by GM Adelson - Velsky and EM Landis

in 1962. The tree is named AVL in honor of its inventors.

AVL Tree can be defined as height balanced binary search tree

in which each node is associated with a balance factor which is

calculated by subtracting the height of its right sub-tree from

that of its left sub-tree.

Tree is said to be balanced if balance factor of each node is in

between 0, -1 to 1, otherwise, the tree will be unbalanced and

need to be balanced.

Balance factor = height of left sub tree – height of right sub

tree.

AVL Rotations

We perform rotation in AVL tree only in case if Balance Factor

is other than -1, 0, and 1. There are basically four types of

rotations which are as follows:

1. L L rotation: Inserted node is in the left subtree of left

subtree of A

2. R R rotation : Inserted node is in the right subtree of right

subtree of A

3. L R rotation : Inserted node is in the right subtree of left

subtree of A

4. R L rotation : Inserted node is in the left subtree of right

subtree of A

1. RR Rotation

When BST becomes unbalanced, due to a node is inserted into

the right subtree of the right subtree of A, then we perform RR

rotation, RR rotation is an anticlockwise rotation, which is

applied on the edge below a node having balance factor -2

In above example, node A has balance factor -2 because a

node C is inserted in the right subtree of A right subtree.

We perform the RR rotation on the edge below A.

2. LL Rotation

https://www.javatpoint.com/rr-rotation-in-avl-tree

When BST becomes unbalanced, due to a node is inserted into

the left subtree of the left subtree of C, then we perform LL

rotation, LL rotation is clockwise rotation, which is applied on

the edge below a node having balance factor 2.

In above example, node C has balance factor 2 because a node A

is inserted in the left subtree of C left subtree. We perform the

LL rotation on the edge below A.

3. LR Rotation:- LR rotation = RR rotation + LL rotation, i.e.,

first RR rotation is performed on sub tree and then LL rotation is

performed on full tree.

State Action

A node B has been inserted into the right subtree of

A the left subtree of C, because of which C has

become an unbalanced node having balance factor 2.

This case is L R rotation where: Inserted node is in

the right subtree of left subtree of C

https://www.javatpoint.com/ll-rotation-in-avl-tree

As LR rotation = RR + LL rotation, hence RR

(anticlockwise) on subtree rooted at A is performed

first. By doing RR rotation, node A, has become the

left subtree of B.

After performing RR rotation, node C is still

unbalanced, i.e., having balance factor 2, as inserted

node A is in the left of left of C

Now we perform LL clockwise rotation on full tree,

i.e. on node C. node C has now become the right

subtree of node B, A is left subtree of B

Balance factor of each node is now either

5. RL Rotation:- LL rotation + RR rotation, i.e., first LL

rotation is performed on subtree and then RR rotation is

performed on full tree, by full tree we mean the first node

from the path of inserted node whose balance factor is other

than -1, 0, or 1.

State Action

A node B has been inserted into the left subtree

of C the right subtree of A, because of which A

has become an unbalanced node having balance

factor - 2. This case is RL rotation where:

Inserted node is in the left subtree of right subtree

of A

As RL rotation = LL rotation + RR rotation,

hence, LL (clockwise) on subtree rooted at C is

performed first. By doing RR rotation,

node C has become the right subtree of B.

After performing LL rotation, node A is still

unbalanced, i.e. having balance factor -2, which is

because of the right-subtree of the right-subtree

node A.

Now we perform RR rotation (anticlockwise

rotation) on full tree, i.e. on node A. node C has

now become the right subtree of node B, and

node A has become the left subtree of B.

Balance factor of each node is now either -1, 0, or

1, i.e., BST is balanced now.

THREADED BINARY TREE

In threaded binary tree the special pointer called thread is used

to point to nodes higher in the tree.

In the linked representation of binary trees, more than one half

of the link fields contain NULL values which results in wastage

of storage space. If a binary tree consists of n nodes

then n+1 link fields contain NULL values. So in order to

effectively manage the space, a method was devised by Perlis

and Thornton in which the NULL links are replaced with special

links known as threads. Such binary trees with threads are

known as threaded binary trees. Each node in a threaded

binary tree either contains a link to its child node or thread to

other nodes in the tree.

Types of Threaded Binary Tree

There are two types of threaded Binary Tree:

o One-way threaded Binary Tree

o Two-way threaded Binary Tree

1) One-way threaded Binary Tree:- In one-way threaded

binary trees, a thread will appear either in the right or left link

field of a node. If it appears in the right link field of a node

then it will point to the next node that will appear on

performing in order traversal. Such trees are called Right

threaded binary trees. If thread appears in the left field of a

node then it will point to the nodes inorder predecessor. Such

trees are called Left threaded binary trees. Left threaded

binary trees are used less often as they don't yield the last

advantages of right threaded binary trees. In one-way

threaded binary trees, the right link field of last node and left

link field of first node contains a NULL. In order to

distinguish threads from normal links they are represented by

dotted lines.

2. Two-way threaded Binary trees: - The right link field of a

node containing NULL values is replaced by a thread that

points to nodes inorder successor and left field of a node

containing NULL values is replaced by a thread that points to

nodes in order predecessor.

B Tree: - B-tree is a self balance search tree in which entry node

contains multiple keys and has more than two children.

B-tree of order m has the following properties.

1. All leaf nodes must be at same level.

2. All nodes except root must have at least m/2 -1 keys and

minimum of m-1 keys.

3. Each node has a maximum of m children and a minimum of

m/2 children.

4. All the key value in a node must be in ascending order.

	Advantages of Binary search tree
	Example of creating a binary search tree
	Searching in Binary search tree
	Deletion in Binary Search tree
	Insertion in Binary Search tree
	A new key in BST is always inserted at the leaf. To insert an element in BST, we have to start searching from the root node; if the node to be inserted is less than the root node, then search for an empty location in the left subtree. Else, search for...
	1. Time Complexity
	2. Space Complexity

	AVL Tree
	AVL Rotations
	1. RR Rotation
	2. LL Rotation
	3. LR Rotation:- LR rotation = RR rotation + LL rotation, i.e., first RR rotation is performed on sub tree and then LL rotation is performed on full tree.
	5. RL Rotation:- LL rotation + RR rotation, i.e., first LL rotation is performed on subtree and then RR rotation is performed on full tree, by full tree we mean the first node from the path of inserted node whose balance factor is other than -1, 0, or 1.
	Types of Threaded Binary Tree

	B Tree: - B-tree is a self balance search tree in which entry node contains multiple keys and has more than two children.

