

Enzyme + Substrate

Enzyme-Substrate Complex Enzyme + Products

Topics: Enzymes: General properties; Classification and mechanism.. Prepared by, Dr. Vijay Kant Pandey HOD, Deptt of Agriculture (Ph.D., GATE, CSIR-UGC-NET, ARS-NET)

Enzymes- Introduction

- Enzymes are *biological catalysts* that speed up the rate of the biochemical reaction.
- Most enzymes are *three dimensional globular proteins* (tertiary and quaternary structure).
- Some special RNA species also act as enzymes and are called *Ribozymes* e.g. hammerhead ribozyme.

Historical background

- **Berzelius** in 1836 coined the term catalysis
- In 1878, Kuhne give term enzyme (Greek-in yeast)
- Isolation of enzyme system from cell free extract of yeast was achieved in 1883 by Buchner. He named the active principle as *zymase* which could convert sugar into alcohol
- In 1926, James Sumner first achieved the isolation and crystallization of the enzyme *urease* from lack bean and identified it as a protein

Enzyme Action

NORMAL (NO ENZYME) REACTION

ENZYME CATALYSED REACTION

Enzymes are Biological Catalysts

Enzymes are proteins that:

- Increase the rate of reaction by lowering the energy of activation.
- Catalyze nearly all the chemical reactions taking place in the cells of the body.
- Have unique threedimensional shapes that fit the shapes of reactants.

Activation Energy

Activation energy is the minimum energy required to cause a process (such as a chemical reaction) to occur.

Enzymes perform the critical task of lowering a reaction's activation energy—

that is, the minimum amount of extra energy required by a reacting molecule to get converted into a product..

Reaction progress

1.Composition of Enzyme Molecules

Holoenzyme = Apoenzyme + Cofactors

APOENZYME and HOLOENZYME

- The enzyme without its non protein moiety is termed as apoenzyme and it is inactive.
- Holoenzyme is an active enzyme with its non protein component.

Types of Cofactors

• <u>Coenzyme:</u>

The non-protein component, loosely bound to apoenzyme by non-covalent bond.

- Examples : vitamins or compound derived from vitamins.
- Prosthetic group

The non-protein component, tightly bound to the apoenzyme by covalent bonds is called a Prosthetic group.

NOMENCLATURE OF ENZYMES

- An enzyme is named according to the name of the substrate it catalyses.
- Some enzymes were named before a systematic way of naming enzyme was formed.

Example: pepsin, trypsin and rennin

- By adding suffix -ase at the end of the name of the substrate, enzymes are named.
- Enzyme for catalyzing the hydrolysis is termed as hydrolase.
 <u>Example</u>:

maltose + water

glucose + glucose

EXAMPLES

substrate	enzymes	products
lactose	lactase	glucose + galactose
maltose	maltase	Glucose
cellulose	cellulase	Glucose
lipid	lip ase	Glycerol + fatty acid
starch	amyl <mark>ase</mark>	Maltose
protein	prote ase	Peptides + polypeptide

CHARACTERISTICS

- Enzymes *speed up* the reaction by lowering the activation energy of the reaction.
- Their presence does not effect the nature and properties of end product.
- They are *highly specific* in their action that is each enzyme can catalyze one kind of substrate.
- Small amount of enzymes can accelerate chemical reactions.
- Enzymes are sensitive to change in pH, temperature and substrate concentration.
- *Turnover number* is defined as the number of substrate molecules transformed per minute by one enzyme molecule.

Catalase turnover number = 6 x106/min

CLASSIFICATION OF ENZYMES

- A systematic classification of enzymes has been developed by International Enzyme Commission.
- This classification is based on the type of reactions catalyzed by enzymes.
- There are *six* major classes.
- Each class is further divided into sub classes, sub sub-classes and so on, to describe the huge number of different enzymecatalyzed reactions.

Classification of Enzymes

1. Oxidoreductases

Enzymes involved in oxidation-reduction reactions. Eg. Alcohol dehydrogenase

2. Transferases

Enzymes involved in transfer of groups from one molecule to another. Eg. Hexokinase

3. Hydrolases

Enzymes that bring about hydrolysis by addition of water. Eg. Lipase

4. Lyases

Enzymes that catalyze the breaking of a chemical bond through means not involving hydrolysis, and forms a double bond or adds a group to a double bond. Eg. Fumarase

5. Isomerases

Enzymes involved in all kinds of isomerization reactions. Eg. Phosphohexose isomerase

6. Ligases

Enzymes catalyzing the joining of two molecules with hydrolysis of ATP. Eg. Glutamine synthetase

Recently, a new class, the *Translocases (EC 7*), has been added, which incorporates enzymes that catalyse the movement of ions or molecules across membranes or their separation within membranes.

Mechanism of Enzyme Catalysis

substrate

- reactant which binds to enzyme
- enzyme-substrate complex: temporary association

product

end result of reaction

active site

enzyme's catalytic site; substrate fits into active site

Mechanism of Enzyme Catalysis

Mechanism of Enzyme Catalysis

Step I $E + S \longrightarrow ES$ Step II $ES \longrightarrow E + P$

Mechanism of Enzyme Catalysis

- Converts substrate into product
- Highly specific for their substrate
- · Accelerate specific chemical reactions without being consumed in the process

Model of enzyme action

Two models to explain the actions of enzymes with substrates are the Lock and Key model & Induced fit model

Induced-Fit

Active site conforms to its substrate's shape.

Lock and Key hypothesis (1894)

The active site is like a "lock" to which substrate fits like a "key" The enzymes active site and substrate should fit like lock & key to initiate a reaction (E-S complex) Induced Fit Hypothesis (1958)
"a hand in a glove model"
Binding of substrate induces a conformational change in the active site & both adjust their shapes to provide optimal fit

Lock and Key Model

- A Lock and Key analogy may be used to describe the fundamental action of a single substrate enzyme.
- In this case, the enzyme is the lock, and the substrate is the key.
- The *active site of an enzyme is structured to fit a specifically shaped substrate*. Once the substrate binds to the active site, the enzyme will facilitate the reaction and release products of the reaction.

Induced-fit Model

In the induced-fit model of enzyme action:

- The active site is flexible, not rigid.
- The shapes of the enzyme, active site, and substrate adjust to maximum the fit, which improves catalysis.
- There is a greater range of substrate specificity.

Mechanism of ENZYME action Lock and Key model enzyme substrate Early theory for enzyme action S Enzyme-substrate have specific shape to fit exactly into another enzyme - substrate complex Induced Fit model active site enzyme changes the shape substrate Enzymes are flexible structures Active site can change the shape to fit with substrate enzyme - substrate Better, widely accepted theory complex

