
Subject Name:- Computer science
Topic Name:- Data type in c lang
Faculty Name:- Dr. Ranjan  kumar  Mishra
Dept Name:- IT



Operator

� An operator is a symbol that tells the compiler to perform specific  
mathematical or logical functions. C language is rich in built-in operators and  
provides the following types of operators.

� Arithmetic Operators

� Relational Operators

� Logical Operators

� Bitwise Operators

� Assignment Operators

� Misc. Operators



Types of Operator(According to Operand):

        Let us  see the mathematical expression : a+b   
                                  where a and b are operands and + is an operator.                         

1. Unary Operator:->  The operator which requires only one operand  to produce a new 
value.

        Ex:-  minus(-), increment(++),decrement(--),Not(!), sizeof() and address operator(&)

2. Binary Operator:-> The operator which requires minimum two operands to produce a 
       new value or to perform any operation.
        Ex:-  plus(+), minus(-), relational operators , logical operators(except  Not(!)) etc.



Arithmetic Operator

� + (Addition) Operator: It is a Binary Operator. It return the sum of 
two  operands without effecting the value of any operand.

� Consider  a = 12 & b = 15.

� If we write a + b then, it will return 27.

� If we write 10 + 2 then, it will return 12.



Arithmetic Operator

� - (Subtraction) Operator: It is a Binary Operator. It returns the subtraction 
of  two operands without effecting the value of any operand.

� Let us consider a = 12 & b = 5.

� If we write a - b then, it will return 7.

� If we write 10 - 2 then, it will return 8.



Arithmetic Operator

� * (Multiplication) Operator: It is a Binary Operator. It return the product 
of  two operands without effecting the value of any operand.

� Let us consider a = 2 & b = 5.

� If we write a * b then, it will return 10.

� If we write 10 * 2 then, it will return 20.



Arithmetic Operator

� / (Division) Operator: It is a Binary Operator. It return the quotient by 
dividing  left operand with right operandwithout effecting the value of any 
operand.

� Let us consider a = 2 & b = 5.

� If we write a / b then, it will return 0.

� If we write 10 / 2 then, it will return 5.



Arithmetic Operator

� % (Modulus) Operator: It is a Binary Operator. It return the remainder 
after  dividing left operand by right operand without effecting the value 
of any  operand.

� Let us consider a = 2 & b = 5.

� If we write a % b then, it will return 2.

� If we write 10 % 2 then, it will return 0.



Arithmetic Operator

� ++ Increment Operator: It is a Unary Operator. It increase the value of  
operand used with this operator by 1 and assigned the new updated value 
in  the operand and return the value according to its notation 
(prefix/postfix).

� Let us consider a = 4. Then,
� Using prefix notation:  

b = ++a,

value of a & b will be respectively 5 & 5.
� Using postfix notation:  

b = a++,

value of a & b will be respectively 5 & 4.



Arithmetic Operator

� -- Decrement Operator: It is a Unary Operator. It decrease the value of  
operand used with this operator by 1 and assigned the new updated value 
in  the operand and return the value according to its notation 
(prefix/postfix).

� Let us consider a = 4. Then,
� Using prefix notation:  

b = --a,

value of a & b will be respectively 3 & 3.
� Using postfix notation:  

b = a--,

value of a & b will be respectively 3 & 4.



Relational 
Operator

� == (is Equals to?) Operator

� != (is Not Equals to?) Operator

� < (is Less Than?) Operator

� > (is Greater Than?) Operator

� <= (is Less Than or Equals to?) Operator

� >= (is Greater Than or Equals to?) 
Operator

http://ppt/slides/slide12.xml
http://ppt/slides/slide12.xml
http://ppt/slides/slide13.xml
http://ppt/slides/slide13.xml
http://ppt/slides/slide14.xml
http://ppt/slides/slide14.xml
http://ppt/slides/slide15.xml
http://ppt/slides/slide15.xml
http://ppt/slides/slide16.xml
http://ppt/slides/slide16.xml
http://ppt/slides/slide17.xml
http://ppt/slides/slide17.xml
http://ppt/slides/slide17.xml


Relational 
Operator

� == (is Equals to?) Operator: It is also a Binary Operator. It compare the value 
of two  operand and check whether they are equal or not, without effecting 
the value  of any operand. If they are equal then it returns true else, it 
returns false.

� Let us consider a = 5, b = 6

� If we write (a == b) then, it returns false.

� If we write (5 == 5) then, it returns true.

� If we write (3 == 2) then, it returns false.

Note: Relational operators always  returns a Boolean value (0 or 1)



Relational 
Operator

� != (is Not Equals to?) Operator: It is Binary Operator. It compare the value of  
two operand and check whether they are equal or not, without effecting the  
value of any operand. If they are equal then it returns false else, it returns  
false.

� Let us consider a = 5, b = 6

� If we write (a != b) then, it returns true.

� If we write (5 != 5) then, it returns false.

� If we write (3 != 2) then, it returns true.



Relational 
Operator

� < (is Less Than?) Operator: It is Binary Operator. It compare the value or two  
operand and check whether left operand is smaller than right operand or not,  
without effecting the value of any operand. If left operand is smaller then, it  
returns true else, it returns false.

� Let us consider a = 5, b = 6

� If we write (a < b) then, it returns true.

� If we write (5 < 5) then, it returns false.

� If we write (3 < 2) then, it returns false.

� If we write (2 < 3) then, it returns true.



Relational 
Operator

� > (is Greater Than?) Operator: It is Binary Operator. It compares the value or  
two operand and check whether left operand is greater than right operand or  
not, without effecting the value of any operand. If left operand is greater  
then, it returns true else, it returns false.

� Let us consider a = 5, b = 6

� If we write (a > b) then, it returns false.

� If we write (5 > 5) then, it returns false.

� If we write (3 > 2) then, it returns true.

� If we write (2 > 3) then, it returns false.



Relational 
Operator

� <= (is Less Than or Equals to?) Operator: It is Binary Operator. It compare the  
value or two operand and check whether left operand is smaller than or  
equals to right operand or not, without effecting the value of any operand. If  
left operand is smaller or equal then, it returns true else, it returns false.

� Let us consider a = 5, b = 6

� If we write (a < b) then, it returns true.

� If we write (5 < 5) then, it returns true.

� If we write (3 < 2) then, it returns false.

� If we write (2 < 3) then, it returns true.



Relational 
Operator

� >= (is Greater Than or Equals to?) Operator: It is Binary Operator. It compare  
the value or two operand and check whether left operand is greater than or  
equals to right operand or not, without effecting the value of any operand. If  
left operand is greater or equal then, it returns true else, it returns false.

� Let us consider a = 5, b = 6

� If we write (a < b) then, it returns false.

� If we write (5 < 5) then, it returns true.

� If we write (3 < 2) then, it returns true.

� If we write (2 < 3) then, it returns false.



Bitwise Operator

� Bitwise & (AND) Operator

� Bitwise | (OR) Operator

� Bitwise ^ (XOR) Operator

� Bitwise ~ (One’s Compliment) 
Operator

� Bitwise << (Left Shift) Operator

� Bitwise >> (Right Shift) Operator

http://ppt/slides/slide20.xml
http://ppt/slides/slide20.xml
http://ppt/slides/slide21.xml
http://ppt/slides/slide21.xml
http://ppt/slides/slide22.xml
http://ppt/slides/slide22.xml
http://ppt/slides/slide23.xml
http://ppt/slides/slide23.xml
http://ppt/slides/slide23.xml
http://ppt/slides/slide24.xml
http://ppt/slides/slide24.xml
http://ppt/slides/slide25.xml
http://ppt/slides/slide25.xml


Bitwise Operator

� Bitwise operators work on bits and perform bit by bit operation. All 
Bitwise  Operators are Binary Operator except ~(One’s Compliment) 
operator. The  Truth table for bitwise & (AND), | (OR), ^ (XOR) operator 
is as follow:

� There are two more bitwise operator i.e. >> (Right Shift), << (Left Shift)  
Operator.

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1



Bitwise Operator

� Binary & (AND) Operator:

� Bitwise & (AND) operator requires two operands to perform AND operation bit by
bit on them.

� Let us consider a = (5)10 = (0101)2, b = (3)10 = (0011)2

� Then c = a & b will be 1 that can be calculated as AND operation perform on a and  
b as shown below:

a = 0101
b= 0011
---------  
c = 0001

c = (0001)2 = (1)10



Bitwise Operator

� Binary| (OR) Operator:

� Bitwise | (OR) operator requires two operands to perform OR operation bit by bit
on them.

� Let us consider a = (5)10 = (0101)2, b = (3)10 = (0011)2

� Then c = a | b will be 7 that can be calculated as OR operation perform on a and b  
as shown below:

a = 0101
b= 0011
---------  
c = 0111

c = (0111)2 = (7)10



Bitwise Operator

� Binary ^ (XOR) Operator:

� Bitwise ^ (XOR) operator requires two operands to perform XOR operation bit by
bit on them.

� Let us consider a = (5)10 = (0101)2, b = (3)10 = (0011)2

� Then c = a ^ b will be 6 that can be calculated as OR operation perform on a and b  
as shown below:

a = 0101
b= 0011
---------  
c = 0110

c = (0111)2 = (6)10



Bitwise Operator

� Binary ~ (One’s Complement) Operator:

� Bitwise ~ (One’s Complement) operator require only a single operands to 
perform

it’s operation bit by bit or it performs one’s compliment on the operand.

� Let us consider a = (5)10 = (0101)2

� Then b = ~a will be 10 that can be calculated as inverting each bit as shown  
below:

a = 0101
----------
b = 1010

b = (0111)2 = (10)10



Bitwise Operator

� Binary << (Left Shift) Operator:
� This operator shift the each bit of the operand to left.

� It requires two operand

� Left operand on which operation is to be performed

� Right operand to specify how many times bits are shifted by 1.

� Let us consider a = (5)10 = (0101)2

� Then b = a << 2 will be 4 that can be calculated as shown 
below

a = 0101
----------  
b = 1010
----------
b = 0100

b = (0100)2 = (4)10



Bitwise Operator

� Binary >> (Right Shift) Operator:
� This operator shift the each bit of the operand to right.

� It requires two operand

� Left operand on which operation is to be performed

� Right operand to specify how many times bits are shifted by 1.

� Let us consider a = (5)10 = (0101)2

� Then b = a >> 2 will be 1 that can be calculated as shown 
below

a = 0101
----------  
b = 0010
----------
b = 0001

b = (0001)2 = (1)10



Assignment Operator

� = (Simple Assignment) Operator

� += (Add AND Assignment) Operator

� -= (Subtract AND Assignment) Operator

� *= (Multiply AND Assignment) operator

� /= (Divide AND Assignment) operator

� %= (Modulus AND Assignment) operator

� <<= (Left Shift AND Assignment) operator

� >>= (Right Shift AND Assignment) 
operator

� &= (Bitwise AND and Assignment) 
operator

� |= (Bitwise OR and Assignment) operator

� ^= (Bitwise XOR and Assignment) 
operator

http://ppt/slides/slide27.xml
http://ppt/slides/slide27.xml
http://ppt/slides/slide28.xml
http://ppt/slides/slide28.xml
http://ppt/slides/slide29.xml
http://ppt/slides/slide29.xml
http://ppt/slides/slide30.xml
http://ppt/slides/slide30.xml
http://ppt/slides/slide31.xml
http://ppt/slides/slide31.xml
http://ppt/slides/slide32.xml
http://ppt/slides/slide32.xml
http://ppt/slides/slide33.xml
http://ppt/slides/slide33.xml
http://ppt/slides/slide34.xml
http://ppt/slides/slide34.xml
http://ppt/slides/slide34.xml
http://ppt/slides/slide35.xml
http://ppt/slides/slide35.xml
http://ppt/slides/slide35.xml
http://ppt/slides/slide36.xml
http://ppt/slides/slide36.xml
http://ppt/slides/slide37.xml
http://ppt/slides/slide37.xml
http://ppt/slides/slide37.xml


Assignment Operator

� = (Simple Assignment) operator: This operator assign the value of the  
operand or value returned after executing an expression on it’s right to 
the  operand to it’s left.

� Let us consider a = 5, b = 3, c = 0

� If we write c = a + b, then c will be 8

� And if we write c = a, then c will be 5



Assignment Operator

� += (Add AND Assignment) operator: This operator add the operand on 
it’s  both sides and assign the result to the operand on it’s left.

� Let us consider a = 5, b = 3, c = 2

� If we write c += a + b, then c will be 10,

� If we write c+= a, then c will be 7,

� And if we write c += 2, then c will be 4.



Assignment Operator

� -= (Subtract AND Assignment) operator: This operator subtract the operand  
on it’s right from the left operand and assign the result to the operand on 
it’s  left.

� Let us consider a = 5, b = 3, c = 9

� If we write c -= a + b, then c will be 1,

� If we write c-= a, then c will be 4,

� And if we write c -= 2, then c will be 7.



Assignment Operator

� *= (Multiply AND Assignment) operator: This operator Multiply the 
operand  on it’s both sides and assign the result to the operand on it’s left.

� Let us consider a = 5, b = 3, c = 2

� If we write c *= a + b, then c will be 16,

� If we write c*= a, then c will be 10,

� And if we write c *= 3, then c will be 6.



Assignment Operator

� /= (Divide AND Assignment) operator: This operator divide the operand on  
the left with the right operand and assign the quotient to the operand on 
it’s  left.

� Let us consider a = 2, b = 3, c = 10

� If we write c /= a + b, then c will be 2,

� If we write c/= a, then c will be 5,

� And if we write c /= 5, then c will be 2.



Assignment Operator

� %= (Modulus AND Assignment) operator: This operator divide the operand 
on  the left with the right operand and assign the remainder to the operand 
on  it’s left.

� Let us consider a = 2, b = 3, c = 10

� If we write c %= a + b, then c will be 0,

� If we write c%= a, then c will be 0,

� And if we write c %= 3, then c will be 1.



Assignment Operator

� <<= (Left Shift AND Assignment) operator: This operator shift bits of the 
left  operand to left by the value of right operand and assign the result to 
the  operand on it’s left.

� Let us consider a = 2, b = 1

� If we write a<<=b, then a will be 4,

� If we write b<<=3, then b will be 8.



Assignment Operator

� >>= (Right Shift AND Assignment) operator: This operator shift bits of the  
left operand to right by the value of right operand and assign the result to 
the  operand on it’s left.

� Let us consider a = 2, b = 1

� If we write a>>=b, then a will be 1,

� If we write a>>=2, then b will be 0.



Assignment Operator

� &= (Bitwise AND and Assignment) operator: This operator performs the AND  
operation on bits of the left operand with right operand and assign the 
result  to the operand on it’s left.

� Let us consider a = 5, b = 3

�  If we write a&=b, then a will be 1,

�  If we write a&=2, then b will be 0.



Assignment Operator

� |= (Bitwise OR and Assignment) operator: This operator performs the OR  
operation on bits of the left operand with right operand and assign the 
result  to the operand on it’s left.

� Let us consider a = 5, b = 3

� If we write a|=b, then a will be 7,

� If we write a|=2, then b will be 7.



Assignment Operator

� ^= (Bitwise XOR and Assignment) operator: This operator performs the XOR  
operation on bits of the left operand with right operand and assign the 
result  to the operand on it’s left.

� Let us consider a = 5, b = 3

�  If we write a^=b, then a will be 6,

�  If we write a^=2, then b will be 7.



Misc. Operator

� sizeof Operator

� & (referencing\Address) Operator

� * (dereferencing) Operator

� ? : (Ternary Operator)

http://ppt/slides/slide39.xml
http://ppt/slides/slide39.xml
http://ppt/slides/slide40.xml
http://ppt/slides/slide40.xml
http://ppt/slides/slide40.xml
http://ppt/slides/slide40.xml
http://ppt/slides/slide41.xml
http://ppt/slides/slide41.xml


Misc. Operator

� sizeof Operator: This operator takes operand(variable name/data type keyword)  
as parameter and return the memory size consume by the operand in bytes.

� Let us assume a as integer variable

� Then sizeof(a) will return 4 (for 32bit C compilers) or 2(for 16bit C compilers).

� Similarly sizeof(float) will return 4, sizeof(char) will return 1 etc.



Misc. Operator

� & (referencing/address) Operator: It uses only one operand on it’s right and it  
returns the memory address of the operand as unsigned integer data type.

� printf(“%u”, &a); will display 6422316(may be different on different machine & every  
execution) on the console.

� printf(“%x”, &a); will display 0x61FF2C(may be different on different machine & 
every  execution) on the console.

� * (dereferencing) Operator: It is pointer to the variable. This operator used to  
declare the pointer variable & extracting the value stored at the address stored in  
pointer variable.

� Let us assume a = 10, *b = &a,

� if we write c = *b then c will be 10.



Misc. Operator

� ? : (Conditional) Operator: It requires three expressions, 
therefore 
       it is also called as Ternary operator.

� 1. Conditional expression

� 2. Expression to execute if condition is true

� 3. Expression to execute if condition is false

� Syntax: (condition) ? (Expression for true) : (expression for false);

� Let us assume a = 15, b = 10

� If c = (a > b) ? a : b; then value of c will be 15

� If c = (a < b) ? a : b; then value of c will be 10



                          Thanks and hope you enjoy the session


