
Subject Name:- Software Engineering
Faculty Name:- Shadma Nigar
DEPARTMENT NAME:- IT Department

NETAJI SUBHAS UNIVERSITY

 INTRODUCTION:

• Software is more than just a program code.
• A program is an executable code, which servers

some computational purpose.
• Software is the collection of computer programs,

procedures rules and associated documentation
and data.

• Software is an information transformer-
producing, managing, modifying, displaying or
transforming information that can simple as a
single bit or a complex as a multimedia
application.

Software Products:
• Software products may be developed for a

particular customer or may be developed for a
general market.

• Software products may be:
• Generic
• Bespoke

• What are the attributes of good software?
• Maintainability.
• Dependability
• Efficiency
• Usability

What is the difference between software engineering
and computer science?

Software Engineering Paradigms:
Software Characteristics:
• Software is developed or engineered, it is

not manufactured in the classical sence.
• Software doesn’t “wear out”.
• Although the industry is moving towards

component based assembly, most
software continues to be custom to built.

Software Applications
Types:
• System Software.
• Real-time Software.
• Business Software.
• Engineering and Scientific Software.
• Embedded Software.
• Personal Computer Software.
• Web-based Software.
• Artifical Intelligence Software.

Software Engineering -A layered
Technology:
• Application of a

systematic,
disciplined,
quantifiable approach
to the development,
operation and
maintenance of
software that is, the
application of
engineering software.

What are the five generic process framework
activities?

• The following generic process framework
is applicable to the majority of software
projects.

• Communication.
•Planning.
•Modeling.
•Construction.
•Deployment.

Process Models:

• Every software engineering organization
should describe a unique set of framework
activities for the software process it
adopts.

• Waterfall Life Cycle Model.
• Iterative Waterfall Life
Cycle Model.

• Prototyping Model.
• Incremental Model.
• Sprial Model.
• RAD Model.
• Sprial Model.

Waterfall Life Cycle
Model.
• It is called classic life cycle or Linear model.
• Requirements are well defined and stable.
• It suggests a systematic, sequential approach to

software development.
• It begins with customer specification of

requirements and progresses.
• Planning.
• Modeling.
• Construction and
• Deployment.

Advantages:
• Easy to understand.
• Each phase has well defined input and output.
• Helps project manger in proper planning of project.
• Provides a templates into whichmethods of

analysis, design, code and support can be placed.
Disadvantages:
• One way street.
• It lack overlapping and interactions among

support delivery of system in
phases.

• Model doesn’t
pieces.

Phases of the Classical Waterfall
Model:

Feasibility Study:
• It involves analysis of the problem and collection of

allrelevant information relating to the product.
• The collected data are analysed.

– Requriments of the Customer.
– Formulations of the different strategies for solving the

problem.
– Evaluation of different solution strategies.

Requriments Analysis and Specification:
• It is understand the exact requriments of the customer

and to document them properly.
– Requirements gathering and analysis.
– Requirements specification.

Design:
• The deign phase is to transform the requirements

specified in the document into a structure that is suitable
for implementation in some programming languaage.

• Traditional Design Approach.
• Object-Oriented Design Approach.

Coding and Unit Testing:
• The purpose mof the coding and unit testing phase of

software development is to translate the software design
into source code.

Integration and System Testing:
• ‘Integration of different modules is coded and unit tested.

• 𝛼 − 𝑇𝑒𝑠𝑡𝑖𝑛𝑔
• 𝛽 − 𝑇𝑒𝑠𝑡𝑖𝑛𝑔
• Accsptance Testing.

Maintenance:
• Maintenance of a typical software products

requires much more than the effort
necessary to develope the product itself.

Iterative Waterfall life cycle model:
• The main changes is done by providing

feedback paths from every phase to its
preceding phase.

Prototype Model:

• Prototyping Model
is a software
development
model in which

is
buil

t,
and

until an

is

prototype
tested,
reworked
acceptable
prototype
achieved.

Advantages:

• Clarity.
• Risk Identification.
• Good Environment.
• Take less time to

complete.
Disadvantages:
• High cost.
• Slow process.
• Too many changes.

RAD Model:

• Rapid Application Development(RAD) is
an incremental software model that a short
development cycle.

• The RAD model is a “high-speed” of the
waterfall model.

• The RAD process enables a development
team to create a fully functional system
within a very short time period.

Contents of RAD Pakages:
• Graphical user development environment.
• Reusable Components.
• Code generator.
• Programming Language.
Advantages:
• Fast products.
• Efficient Documentation.
• Interaction with user.
Disadvantages:
• User may not like fast activities.
• Not suitable for technical risks.

Sprial Model :
• This Spiral model is a combination of

iterative development process model and
sequential linear development model i.e.
the waterfall model with a very high
emphasis on risk analysis.

• The spiral model has four phases:
Planning, Design, Construct and
Evaluation.

Quadrants in sprial model :

Advantages :
• Risk Identification at early stage.
• Suitable for high rk projects.
• Flexibility for adding

functionaility.
Disadvantages:
• Costly.
• Risk dependent.
• Not suitable for smaller projects.
• Difficult to meeting budget.

Types of system
requirements:• Functional requirements.
• Non-functional Requirements.
• Domain Requirements.
Functional Requirements:
• The customer should provide statement of service. It

should be clear how the system should react to particular
inputs and how a particular system.

Problem of Functional Requirements:
• User Intention.
• Developer Interpretation.
• Requirements completness and consistency:

Non-Functional Requirements:
• The system properties and constraints

various properties of a system can be:
realiability, response tiime, storage
requirements.

Types of Non-Functional
Requirements:
• Product Requirements.
• Organizational Requirements.
• External Requirements.

Domain Requirements:
• Requirements can be application domain

of the system, reflecting, characteristics of
the domain.

Problem of Domain Requements:
• Understandability.
• Implicitness.
User Requirements:
• User requirements are defined using

natural language lables and diagrams
because these are the representation that
can be undestood by all users.

• Client Managers.
• System End Users.
• Client Engineers.
• Contract Managers.
Problem of User Requirements:
• Lack of Clarity.
• Requirements Confusion.
• Requirements Mixture.

Software Requirement Specification:
• Software Requirements document is the

specification of the system.
• It is not a design document.
• Requirements document is called SRS.
Users of SRS:
• Users, Customer and marketing

Personnel.
• Software Developers.
• Test Engineers.
• Project Managers.
• Maintenance Engineers.

