
Database Management System

Relational Algebra Operations

Bca 3rd semester

Ashmita Mahanty

Assistant professor

Departement of IT

 Relational Algebra operations

In procedural languages, the user would specify what has to be done and how it can be done, i.e. the

step by step procedure of it. Therefore, a program written using procedural language works with the

state of machine. However, the size of the program would be large. But, the overall efficiency of a

procedural language program is high. The common examples procedural programming languages are

BASIC, FORTRAN, COBOL, C, Pascal, etc.

Non-procedural languages are fact-oriented programing languages. The programs written in non-

procedural languages specify what is to be done and do not state exactly how a result is to be

evaluated. In the non-procedural programming language, the user would specify what has to be done

but doesn't get into the how it has to be done part

Relational Algebra: It is a procedural query language, which takes the instance of a relation as an input and

yields the relation as an output. Queries are performed by the operator, these operator are either Unary or binary.

There are following fundamental operators that are used in relational algebra:-

1. Select

2. Project

3. Union

4. Set difference

5. Cartesian product

6. Joins

1. Select Operation: The SELECT operation is used for selecting a subset of the tuples according to a given

selection condition. Sigma (σ) Symbol denotes it. It is used as an expression to choose tuples which meet the

selection condition. Select operator selects tuples that satisfy a given predicate.

Consider the Tutorial table:-

Roll No. Topic Author Cost

1 Database Navate 500

2 OS Puneet Kaur 1000

3 Graphic Saurbh Jain 1205

4 TOC Naveen 1234

5 DS N.K.Sharma 650

a. Select the topic whose name is database.

σtopic=”Databse “ (Tutorial)

b. Select the book whose price is greater than 1000.

σcost>1000(Tutorial)

2. Project Operation: The select operation selects some of the rows from the table while discarding other rows,

the PROJECT operation on the other hand, select certain columns from the table and discard the other

columns. If we are interested in certain attribute of relation, we use the RPOJECT operation to project the

relation over these attribute only.

Mohan

Name

Consider the following table:-

CustomerID CustomerName Status

1 Amazon Active

2 Apple Active

3 Alibaba Inactive

4 Google Inactive

Π CustomerName, Status (Customers)

3. UNION: The result of this operation, denoted by R U S, is a relation that includes all the tuples that are either

in R or in S or in both R and S. Duplicate tuples are eliminated.

Table R
Name Address

Ram U.P.

Shaym Haryana
Mohan Delhi

Table S:
Name Mobile No.

Ram 9999999393

Shyam 9999999563

S.K. 8899999393

Shruti 9999779393

∏ NAME (R) ∪ ∏ NAME (S):

Name

Ram

Shaym

Mohan

S.K.

Shruti

4. Set Difference (or MINUS):- The result of this operation, denoted by R-S, is relation that includes all the

tuples that are in R but not in S.

∏ NAME (R) - ∏ NAME (S)

5. Cartesian product: It is also known as cross product or cross join which is denoted by X. It is used to

combine each row of one table with the each row of other table.

Employee:

Name Salary

Ram 10000

Shaym 20000

Mohan 5000

Department:-

Dprt_No. Dprt_Name

1 H.R.

2 Management

3 IT

Employee X Department

Name Salary Dprt_No. Dprt_Name

Ram 10000 1 H.R.

Ram 10000 2 Management

Ram 10000 3 IT

Shaym 20000 1 H.R.

Shaym 20000 2 Management

Shaym 20000 3 IT

Mohan 5000 1 H.R.

Mohan 5000 2 Management

Mohan 5000 3 IT

6. RENAME

The RENAME operation is used to rename the output of a relation.

Sometimes it is simple and suitable to break a complicated sequence of operations and rename it as a relation

with different names. Reasons to rename a relation can be many, like –

 We may want to save the result of a relational algebra expression as a relation so that we can use it later.

 We may want to join a relation with itself, in that case, it becomes too confusing to specify which one of

the tables we are talking about, in that case, we rename one of the tables and perform join operations on

them.
Notation:

ρ X (R)

Example-1: Query to rename the relation Student as Male Student and the attributes of Student – RollNo, SName

as (Sno, Name).

Sno Name

2600 Ronny

2655 Raja

ρ MaleStudent(Sno, Name) πRollNo, SName(σCondition(Student))

Example-2: Query to rename the attributes Name, Age of table Department to A,B.

ρ (A, B) (Department)

Example-3: Query to rename the table name Project to Pro and its attributes to P, Q, R.

ρ Pro(P, Q, R) (Project)

Extended Operators in Relational Algebra
Join

Intersection

Divide

Table R
Name Address

Ram U.P.

Shaym Haryana

Mohan Delhi

Table S:
Name Mobile No.

Ram 9999999393

Shyam 9999999563

S.K. 8899999393

Shruti 9999779393

Intersection: The result of this operation, denoted by R∩S is a relation that includes all the tuples that are

common in both R and S.

∏ NAME (R) ∩ ∏ NAME (S)

Name

Ram

Shaym

Join Operations: A Join operation combines related tuples from different relations, if and only if a given join

condition is satisfied. It is denoted by ⋈.

1. INNER JOIN

An INNER JOIN returns only the rows that have matching values in both tables. If there is no match, the row

is not included in the result.

Syntax:

SELECT column_names

FROM table1

INNER JOIN table2 ON table1.common_column = table2.common_column;

Example:

Assume we have two tables:

Employees Table

emp_id name dept_id

1 Alice 101

2 Bob 102

3 Charlie 103

Departments Table

dept_id department_name

101 HR

102 IT

104 Finance

Query using INNER JOIN:

SELECT employees.name, departments.department_name

FROM employees

INNER JOIN departments ON employees.dept_id = departments.dept_id;

Result:

name department_name

Alice HR

Bob IT

Explanation:

 Only rows where dept_id matches in both tables are returned.

 The row with dept_id = 103 from Employees and dept_id = 104 from Departments are excluded.

Types of INNER JOIN:

1. Equi JOIN: Uses = operator in the condition.

SELECT * FROM employees INNER JOIN departments ON employees.dept_id = departments.dept_id;

2. Natural JOIN: Automatically joins tables with the same column name (not explicitly used in SQL Server).

SELECT * FROM employees NATURAL JOIN departments;

2. OUTER JOIN

An OUTER JOIN returns all records from one table and the matched records from another table. If there is no

match, NULL values are returned.

Types of OUTER JOIN:

1. LEFT JOIN (LEFT OUTER JOIN)

o Returns all rows from the left table and matching rows from the right table.
o If there’s no match, NULL is returned from the right table.

Syntax:

SELECT column_names

FROM table1

LEFT JOIN table2 ON table1.common_column = table2.common_column;

Example:

SELECT employees.name, departments.department_name

FROM employees

LEFT JOIN departments ON employees.dept_id = departments.dept_id;

Result:

name department_name

Alice HR

Bob IT

Charlie NULL

Explanation:

 All employees are shown, even if their dept_id has no match in the Departments table.

 Charlie has no matching department, so NULL appears.

2. RIGHT JOIN (RIGHT OUTER JOIN)
o Returns all rows from the right table and matching rows from the left table.
o If there’s no match, NULL is returned from the left table.

Syntax:

SELECT column_names

FROM table1

RIGHT JOIN table2 ON table1.common_column = table2.common_column;

Example:

SELECT employees.name, departments.department_name

FROM employees

RIGHT JOIN departments ON employees.dept_id = departments.dept_id;

Result:

name department_name

Alice HR

Bob IT

NULL Finance

Explanation:

o All departments are displayed, even if no employees belong to them.
o The "Finance" department has no employees, so NULL appears in the name column.

3. FULL JOIN (FULL OUTER JOIN)
o Returns all records when there is a match in either table.
o If there is no match, NULL is returned for missing values.

Syntax:

SELECT column_names

FROM table1

FULL JOIN table2 ON table1.common_column = table2.common_column;

Example:

SELECT employees.name, departments.department_name

FROM employees

FULL JOIN departments ON employees.dept_id = departments.dept_id;

Result:

name department_name

Alice HR

Bob IT

Charlie NULL

NULL Finance

Explanation:

o All employees and all departments are displayed.
o If there is no match, NULL appears.

Divide Operation in DBMS (Relational Algebra)

The DIVISION (÷) operation is a special type of operation in Relational Algebra that is used to retrieve

records that are related to all entries of another set. It is typically used when dealing with "all" conditions in a

query.

1. Definition

 The division operation (÷) is used when a relation contains a set of values that need to be matched with all values

in another relation.

 It is used in scenarios where we need to find entities that have a relationship with all possible values of another
set.

2. Syntax

If we have two relations A(X, Y) and B(Y), the result of A ÷ B will return a set of values from X that are related to

all values in B.

A(X, Y) ÷ B(Y) = C(X)

 A(X, Y): A table containing attributes X and Y.

 B(Y): A table containing only Y values.

 C(X): The result contains only X values that are associated with all Y values in B.

3. Example of DIVISION Operation

Given Two Relations:

Student_Course Table (A - X, Y)

Student Course

Alice DBMS

Alice OS

Bob DBMS

Bob OS

Charlie DBMS

Course Table (B - Y)

Course

DBMS

OS

Query:

Find students who have taken all courses listed in the Course Table (B).

Result:

Student

Alice

Bob

Explanation:

 Alice has taken DBMS and OS → Included

 Bob has taken DBMS and OS → Included

 Charlie has taken only DBMS → Not included (missing OS)

So, Alice and Bob are the only students who have taken all courses in the Course Table.

